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Abstract

Let (Ln) be a sequence of positive linear operators onC[0, 1], satisfying that(Ln(ei)) converge
in C[0, 1] (not necessarily toei ) for i = 0, 1,2, whereei(x) = xi . We prove that the conditions that
(Ln) is monotonicity-preserving, convexity-preserving and variation diminishing do not suffice to
insure the convergence of(Ln(f )) for all f ∈ C[0, 1]. We obtain the Korovkin-type theorem and
give quantitative results for the approximation properties of theq-Bernstein operatorsBn,q as an
application.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let (Ln)n�1 be a sequence of positive linear operators onC[0, 1]. We say thatLn is
monotonicity-preserving (or convexity-preserving) ifLn(f ) is increasing (or convex) for
an increasing (or convex) functionf. For any real sequencea, finite or infinite, we denote
by S−(a) the number of strict sign changes ina. For f ∈ C[0, 1], we defineS−(f ) to be
the number of sign changes off, that is

S−(f ) = supS−(f (x0), . . . , f (xm)),
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where the supremum is taken over all increasing sequences 0�x0 < · · · < xm�1 for all
positive integersm.We say thatLn is variation diminishing if for all functions f∈ C[0, 1],
we have

S−(Lnf )�S−(f ).

From the well-known Korovkin theorem, we have the convergenceLn(f ) → f in the
uniform norm for allf ∈ C[0, 1], if it holds for the test functions ei(x) = xi, i = 0, 1,2
(see[1]). However, in studying the approximating properties of theq-Bernstein operators
(see Section 3), we encounter the following problem: the sequences(Ln(ei))n�1 converge
inC[0, 1]but not necessarily toei for i = 0, 1,2. It is natural to askwhether the convergence
of (Ln(ei))n�1, i = 0, 1,2 implies that there exists an operatorL∞ onC[0, 1] such that
‖Ln(f ) − L∞(f )‖ → 0 for eachf ∈ C[0, 1], here‖ · ‖ represents the uniform norm. In
general, the answer is negative. In order to insure the existence ofL∞, we must add some
conditions. Which of the following conditions can guarantee this?
Condition A:(Ln) is monotonicity-preserving and convexity-preserving.
Condition B:(Ln) is variation diminishing.
Condition C:(Ln(f, x))n�1 is non-increasing for any convex functionf and anyx ∈

[0, 1].
We assert that Conditions A and B do not suffice to insure the convergence of(Ln(f ))

for all f ∈ C[0, 1]. We shall give examples. But if we assume(Ln) satisfies Condition
C, we can show the existence ofL∞. This is our Korovkin-type theorem. Also, the rate
of approximation|Ln(f, x) − L∞(f, x)| can be estimated by the smoothness off and the
quantity|Ln(e2, x) − L∞(e2, x)|. These statements are proved in Section 2. In Section 3,
as an application of the above Korovkin-type theorem, we give quantitative results for the
approximation properties of theq-Bernstein operators. Note that theq-Bernstein operators
satisfy Conditions A–C (see Section 3).
Now we formulate the main results of the paper. Forf ∈ C[0, 1], t > 0, the second

modulus of smoothness off is defined by

�2(f, t) = sup
0<h� t

sup
x∈[0,1−2h]

|f (x + 2h) − 2f (x + h) + f (x)|.

Theorem 1. There exists a sequence(Ln)n�1 of positive linear operators onC[0, 1] such
that

(a) the sequences(Ln(ei)) converge inC[0, 1] for i = 0, 1,2,whereei(x) = xi ,
(b) (Ln) satisfies ConditionsA andB, and
(c) there exists a functionf ∈ C[0, 1] such that(Ln(f )) does not converge inC[0, 1].

Theorem 2. Let the sequence(Ln) of positive linear operators onC[0, 1] satisfy the fol-
lowing conditions:

(d) the sequence(Ln(e2)) converges to a functionL∞(e2) in C[0, 1],
(e) (Ln) satisfies ConditionC.
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Then there exists an operatorL∞ onC[0, 1] such that‖Ln(f ) − L∞(f )‖ → 0 for every
f ∈ C[0, 1].Furthermore,

|Ln(f, x) − L∞(f, x)|�c �2(f,
√

�n(x)), (1.1)

where�n(x) = |Ln(e2, x) − L∞(e2, x)|, c is a constant depending only on‖L1(e0)‖.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. First, we construct linear operatorsL(·, �) on C[0, 1] with � ∈
[1/3,2/3]. For f ∈ C[0, 1], let

L(f, �, x) = f (0)a(x, �) + f (�)b(x, �) + f (1)c(x,�),

wherea(x, �), b(x, �), c(x, �) satisfy the system of equations:



a(x, �) + b(x, �) + c(x, �) = 1,
b(x, �) · � + c(x, �) = x,

b(x, �) · �2 + c(x, �) = g(x),

g(x) =
{
2x/3, 0�x�1/2,
4x/3− 1/3, 1/2< x�1.

Solving the system, we get

a(x, �) = � + g(x) − (1+ �)x
�

, b(x, �) = x − g(x)

� − �2
, c(x, �) = g(x) − �x

1− �
,

Forf ∈ C[0, 1], � ∈ [1/3,2/3], by the definitions ofL(·, �) andg(x), we know that

L(e0, �) = e0, L(e1, �) = e1, L(e2, �) = g, (2.1)

L(f, �, 0) = f (0), L(f, �, 1) = f (1) (2.2)

and

�x�2x/3�g(x)�x;

� + g(x) − (1+ �)x =
{
(�(1− x)/x − 1/3)x, 0�x�1/2
(� − 1/3)(1− x), 1/2< x�1

�0.

Hencea(x, �), b(x, �), c(x, �)�0 and therefore the operatorsL(·, �) are positive lin-
ear operators. From (2.1), we know that the operatorsL(·, �) reproduce linear functions.
Furthermore,L(·, �) are monotonicity-preserving and convexity-preserving. In fact, iff is
increasing on[0, 1], then

3�(1− �)
d(L(f, �, x))

dx

=
{
(f (�) − f (0)) + �(2− 3�)(f (1)− f (0)), 0�x < 1/2
(f (1)− f (�)) + (3� − 1)(1− �)(f (1)− f (0)), 1/2< x�1

�0.
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SoL(f, �, x) are also increasing on[0, 1]. If f is convex on[0, 1], then forx ∈ [0, 1/2),
y ∈ (1/2, 1], we have

3�(1−�)
(d(L(f, �, y))

dy
−d(L(f, �, x))

dx

)
=2((1−�)f (0)+�f (1)−f (�))�0.

HenceL(f, �, x) are also convex on[0, 1].
Next we show that the operatorsL(·, �) are variation diminishing. Forf ∈ C[0, 1],

L(f, �) are piecewise linear and continuous, by (2.2) we have

S−(L(f, �)) = S−(L(f, �, 0), L(f, �, 1/2), L(f, �, 1))
= S−(f (0), L(f, �, 1/2), f (1))�2. (2.3)

If S−(f ) = 0 or �2, from the positivity ofL(·, �) and (2.3), we get

S−(L(f, �))�S−(f ). (2.4)

Suppose that (2.4) fails for somef ∈ C[0, 1]. ThenS−(f ) = 1 andS−(L(f, �)) =
S−(f (0), L(f, �, 1/2), f (1)) = 2. Hencef (0) · f (1) > 0. For arbitrary� ∈ [1/3,2/3],
S−(f (0), f (�), f (1))�S−(f ) = 1, thus we obtain thatf (�) · f (0)�0. SinceS−(f (0),
f (�), f (1)) = 0, we haveS−(L(f, �)) = 0. This leads to a contradiction. So (2.4) holds.
The operatorsL(·, �) are variation diminishing.

Now we construct the sequence of linear positive operators(Ln) onC[0, 1]. Let�(n) =
(1+| sin n|)/3. Then�(n) ∈ [1/3,2/3]and{�(n)}n�1 diverges. LetLn(f ) = L(f, �(n)).
Then(Ln) satisfies (a) and (b). Let the continuous functionf be such thatf (0) = 1 and

f (x) = 0 for x ∈ [1/4, 1]. Then(Ln(f )) =
(
1− x + g(x)−x

�(n)

)
diverges inC[0, 1]. The

proof of Theorem 1 is complete.�

Proof of Theorem 2. First we show the existence of the operatorL∞. Let the sequence
(Ln) of positive operators satisfy (d) and (e). ThenLn(l) = Lm(l) for any linear function
l, and the uniform norm supn�1 ‖Ln‖ of (Ln) satisfies

sup
n�1

‖Ln‖� sup
n�1

‖Ln(e0)‖ = ‖L1(e0)‖ < +∞.

By the well-known Banach–Steinhaus theorem (see[1]), we know it suffices to prove
the convergence of the sequence(Ln(f )) in C[0, 1] for eachf ∈ C2[0, 1], since the
spaceC2[0, 1] is dense inC[0, 1], whereC2[0, 1] denotes the space of twice continuously
differentiable functions on[0, 1].
For anyf ∈ C2[0, 1], we know that the functionsg1(x) = ‖f ′′‖

2 x2 − f (x), g2(x) =
‖f ′′‖
2 x2 + f (x) are convex. By the condition (e) we know for anyn, p > 0,

Ln(gi, x) − Ln+p(gi, x)�0, i = 1,2.
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Hence

|Ln(f, x) − Ln+p(f, x)|� ‖f ′′‖
2

(
Ln(e2, x) − Ln+p(e2, x)

)
, (2.5)

‖Ln(f ) − Ln+p(f )‖� ‖f ′′‖
2

‖Ln(e2) − Ln+p(e2)‖. (2.6)

Conditions (d) and (2.6) imply that(Ln(f )) is a Cauchy sequence and converges inC[0, 1].
So there exists an operatorL∞ onC[0, 1] such that‖Ln(f ) − L∞(f )‖ → 0 for anyf ∈
C[0, 1].
Now letp → ∞ in (2.5), we obtain

|Ln(f, x) − L∞(f, x)|� ‖f ′′‖
2

(
Ln(e2, x) − L∞(e2, x)

)
= ‖f ′′‖

2
�n(x). (2.7)

Using the equivalence of K-functionals and moduli of smoothness, following the same
methods as in the proof of Theorem 5.3 of Chapter 7 in[1], we can get (1.1) from (2.7).
Theorem 2 is proved.�

3. Application of Korovkin-type theorem

Let q ∈ (0, 1]. For each non-negative integerk, theq-integer[k] and theq-factorial[k]!
are defined by

[k] =
{
(1− qk)

/
(1− q), q �= 1,

k, q = 1,
[k]! =

{ [k] [k − 1] · · · [1], k�1,
1, k = 0.

For the integersn, k, n�k�0, the Gaussianq-binomial coefficients are defined by[
n

k

]
= [n]!

[k]![n − k]! .

In [7], Phillips proposed the following generalization of the Bernstein operators, based
onq-integers. For each positive integern, andf ∈ C[0, 1], we define

Bn,q(f, x) =
n∑

k=0

f
( [k]
[n]

) [
n

k

]
xk

n−k−1∏
s=0

(1− qsx), 0�x�1,

where an empty product denotes 1. Whenq = 1, Bn,q(f, x) reduces to the well-known
Bernstein polynomialsBn(f, x):

Bn(f, x) =
n∑

k=0

f

(
k

n

) (
n

k

)
xk(1− x)n−k.

Like the classical Bernstein polynomials, theq-Bernstein operators share some good
properties. Also a great number of interesting results related to theq-Bernstein operators
were obtained (see[2–7]). From[2], we know thatq-Bernstein operators satisfy Conditions
A, B. But from Theorem 1, Conditions A and B are not sufficient for the convergence of
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(Bn,q). From[4,7], we know that theq-Bernstein operatorsBn,q reproduce linear functions
and satisfy Condition C. It is proved in[7] thatBn,q(e2, x) = x2 + x(1− x)/[n]. Hence

Bn,q(e2) → B∞,q(e2), B∞,q(e2, x) = x2 + (1− q)x(1− x).

|Bn,q(e2, x)−B∞,q(e2, x)|=qn(1−q)

1−qn
x(1−x)�qnx(1− x), 0<q<1. (3.1)

sup
0<q<1

|Bn,q(e2, x) − B∞,q(e2, x)| = sup
0<q<1

qn(1− q)

1− qn
x(1− x) = x(1− x)

n
.

Since we know that

|Bn,1(e2, x) − B∞,1(e2, x)|� x(1− x)

n
,

we conclude that

sup
0<q �1

|Bn,q(e2, x) − B∞,q(e2, x)|� x(1− x)

n
. (3.2)

From (3.1), (3.2) and Theorem 2, we obtain that

Theorem 3. Let 0< q < 1. Then

|Bn,q(f, x) − B∞,q(f, x)|�c �2(f,
√
qnx(1− x) ). (3.3)

Furthermore,

sup
q∈(0,1]

|Bn,q(f, x) − B∞,q(f, x)|�c �2(f,
√
x(1− x)/n ). (3.4)

wherec is the absolute constant.

Remark 1. In [3], it is proved that for eachf ∈ C[0, 1], Bn,q(f, x) → B∞,q(f, x),
asn → ∞, uniformly with respect tox ∈ [0, 1] andq ∈ [�, 1], where 0< � < 1,
B∞,1(f ) = f and for 0< q < 1,

B∞,q(f, x) =
{ ∑∞

k=0 f (1− qk) xk

(1−q)k[k]!
∏∞

s=0(1− qsx), 0�x < 1,

f (1), x = 1.

From (3.4), we conclude that the rates of convergence‖Bn,q(f ) − B∞,q(f )‖ can be dom-
inated byc �2(f, n

−1/2) uniformly with respect toq ∈ (0, 1].

Remark 2. In the case 0< q < 1, from (3.3) we know that the rates of convergence
‖Bn,q(f )−B∞,q(f )‖ have the orderqn for the 2 times continuously differentiable function
versus 1/nfor the classical operators.
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Remark 3. In [8], Tiberiu Trif introduced the followingq-Meyer-König and Zeller opera-
torsMn,q . For each positive integern, andf ∈ C[0, 1], we define

Mn,q(f, x) =
{ ∑∞

k=0 f
( [k]

[n+k]
) [

n + k

k

]
xk

∏n
j=0(1− qjx), 0�x < 1,

f (1), x = 1.

The operatorsMn,q satisfy Conditions A–C (see[8]). Thus, we conclude that Theorem 3
holds also forMn,q .
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