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Abstract

Let (L) be a sequence of positive linear operatorsdh, 1], satisfying that L, (¢;)) converge
in C[0, 1] (not necessarily te;) for i = 0, 1,2, wheree; (x) = x’. We prove that the conditions that
(Ly) is monotonicity-preserving, convexity-preserving and variation diminishing do not suffice to
insure the convergence oL, (f)) for all f € C[O, 1]. We obtain the Korovkin-type theorem and
give quantitative results for the approximation properties ofgHgernstein operators, , as an
application.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let (L,),>1 be a sequence of positive linear operatorsif, 1]. We say that,, is
monotonicity-preserving (or convexity-preserving)Lif ( f) is increasing (or convex) for
an increasing (or convex) functidnFor any real sequencg finite or infinite, we denote
by S~ (a) the number of strict sign changesanFor f e C[0, 1], we defineS~(f) to be
the number of sign changesfthat is

ST(f) =supS~(f(x0), ..., f(xm)),
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where the supremum is taken over all increasing sequengeg & --- < x,, <1 for all
positive integersn. We say that,, is variation diminishing if for all functions £ CI0, 1],
we have

ST(Luf)<S ().

From the well-known Korovkin theorem, we have the convergdngef) — f in the
uniform norm for allf e C[0, 1], if it holds for the test functions;éx) = x’, i =0,1,2
(se€[1]). However, in studying the approximating properties of ¢hBernstein operators
(see Section 3), we encounter the following problem: the sequéhgés)), > 1 converge
in C[0, 1]butnot necessarily tg fori = 0, 1, 2. Itis natural to ask whether the convergence
of (L,(e)))n>1,i = 0, 1,2 implies that there exists an operafog, on C[0, 1] such that
IL,(f) — Loo(f)]| — O for eachf € C[O, 1], here|| - || represents the uniform norm. In
general, the answer is negative. In order to insure the existentg pfve must add some
conditions. Which of the following conditions can guarantee this?

Condition A: (L,) is monotonicity-preserving and convexity-preserving.

Condition B:(L,) is variation diminishing.

Condition C:(L,(f, x))»>1 iS non-increasing for any convex functiérand anyx e
[0, 11.

We assert that Conditions A and B do not suffice to insure the convergerniég ©f))
for all f € CI0, 1]. We shall give examples. But if we assuiflg,) satisfies Condition
C, we can show the existence bf,. This is our Korovkin-type theorem. Also, the rate
of approximation L, (f, x) — Lo (f, x)| can be estimated by the smoothnes§afid the
quantity|L, (e2, x) — Lo (e2, x)|. These statements are proved in Section 2. In Section 3,
as an application of the above Korovkin-type theorem, we give quantitative results for the
approximation properties of ttegBernstein operators. Note that tipdBernstein operators
satisfy Conditions A—C (see Section 3).

Now we formulate the main results of the paper. Foe C[0, 1], + > 0, the second
modulus of smoothness bfs defined by

w2(f,1) = sup  sup [f(x+2h) —2f(x+h)+ f(x)]
O<h <t x€[0,1-2h]

Theorem 1. There exists a sequenck,), > 1 of positive linear operators o€'[0, 1] such
that

(a) the sequenced., (¢;)) converge inC[0, 1] for i = 0, 1,2, wheree; (x) = x',
(b) (L,) satisfies Condition& andB, and
(c) there exists a functiogf € C[0, 1] such that(L, (f)) does not converge i@[0, 1].

Theorem 2. Let the sequencg.,) of positive linear operators o@’'[0, 1] satisfy the fol-
lowing conditions:

(d) the sequencél, (e2)) converges to a functioh (e2) in C[O, 1],
(e) (L,) satisfies ConditiorC.
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Then there exists an operatér,, on C[0, 1] such that||L,,(f) — Lo (f)|| — 0 for every
f € C[0, 1]. Furthermore,

ILn(f, %) = Loo(f, ¥)| <€ 02(f, v 2n (X)), (1.1

wherel, (x) = |L,(e2, x) — Loo(e2, x)|, C is a constant depending only ¢ 1(eg)||.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. First, we construct linear operators-, £) on C[0, 1] with ¢ €
[1/3,2/3]. For fe CI[O, 1], let

L(f, ¢ x) = f(Qa(x, ) + f(Ob(x, &) + f(De(x, &),
wherea(x, &), b(x, &), c(x, &) satisfy the system of equations:

a(x, &) +b(x, &) +clx, &) =1,
bx, &) - &+ &) = x, 2(x) = {
b(x, &) - E +cx, &) = g(x),

Solving the system, we get

2x/3, 0<x<1/2
4x/3—1/3,1/2 < x<1.

(. &) = c+gk) g 1+ 6)x, b(x, &) = x€—_g§2€ ,oc(x, 9 = %,
For f € C[0,1], ¢ € [1/3,2/3], by the definitions of(-, £) andg(x), we know that

L(eo, &) =eo, L(er, &) =e1, L(e2,6) =g, (2.1)

L(f.&,0 = f0), L(f&DH=/fD (2.2)
and

Cx<2x/3<g(x) <x;

€A -x)/x—-1/3)x, 0<x<1/2
éJ”‘g(x)_(Hé)X_{(6—1/3)(1—)0, 12 <x<12

Hencea(x, &), b(x, &), c(x, &) >0 and therefore the operatofs-, &) are positive lin-
ear operators. From (2.1), we know that the operakdrs¢) reproduce linear functions.
FurthermoreL (-, £) are monotonicity-preserving and convexity-preserving. In fadtisif
increasing on0, 1], then
d(L(f, ¢, x))

dx

_ {(f(f)—f(O))+f(2—3§)(f(l)—f(0)), Osx <1/2_
(A= fE)+E-DA-O(fD)— f(0), 1/2<x<17 T

q1-9
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SoL(f, ¢, x) are also increasing dif, 1]. If f is convex o0, 1], then forx € [0, 1/2),
y € (1/2, 1], we have

d(L(f.S.y) d(L(f. & x))
dy dx

aca-o)( )=2(1-0 fO+EF W= f ) 20.

HenceL(f, &, x) are also convex ofD, 1].
Next we show that the operators-, &) are variation diminishing. Fof € CI0, 1],
L(f, £) are piecewise linear and continuous, by (2.2) we have

STL(f,O)=8"(L(f.£0), L(f. £ 1/2), L(f, &, 1)
=57(f(0), L(f. & 1/2, fAN<2 (2.3)

If S~(f) =0or>2, from the positivity ofL(-, &) and (2.3), we get

STL(f, <SS (. (2.4)

Suppose that (2.4) fails for some € C[0, 1]. ThenS=(f) = 1 andS~(L(f, &) =
ST(f(0), L(f, &,1/2), f(1)) = 2. Hencef(0) - (1) > 0. For arbitrary¢ € [1/3,2/3],
ST(f0), f(&), F)SS(f) = 1, thus we obtain thaf (&) - f(0)>0. SinceS~(f(0),
(&, f(1) =0, we haveS™ (L(f, £)) = 0. This leads to a contradiction. So (2.4) holds.
The operatord. (-, £) are variation diminishing.

Now we construct the sequence of linear positive operdiorson C[0, 1]. Leté(n) =
(1+|sinn|)/3. Thené(n) € [1/3,2/3]1and{{(n)}, > 1 diverges. Lel,, () = L(f, &(n)).
Then(L,) satisfies (a) and (b). Let the continuous functidye such thatf(0) = 1 and
f(x) =0forx € [1/4,1]. Then(L,(f)) = (1— X+ %) diverges inC[0, 1]. The
proof of Theorem 1 is complete.[]

Proof of Theorem 2. First we show the existence of the operakqg. Let the sequence
(L) of positive operators satisfy (d) and (e). Theg(l) = L,, (/) for any linear function
|, and the uniform norm syp. ; || L, || of (L,) satisfies

SUP|ILnll< SUpllLn(eo)ll = [[L1(eo)ll < +o0.

n=>1 n=>1

By the well-known Banach—Steinhaus theorem (Egg we know it suffices to prove
the convergence of the sequende,(f)) in C[0, 1] for eachf e C?[0, 1], since the
spaceCZ[O, 1]is dense irC[0, 1], whereC2[0, 1] denotes the space of twice continuously
differentiable functions of0, 1].

For any f € C?[0, 1], we know that the functionsy(x) = Lzﬂ“xz — f(x), g2(x) =

Lz”HXZ + f(x) are convex. By the condition (e) we know for amyp > 0,

Ln(gi,x)_Ln+p(gisx)>O: i=12
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Hence

a0 = Ly (01 < 2

I1Ln(f) = Lpgp(HII < ”f ” —5—l1Ln(e2) — Luyp(e2)]l. (2.6)

Ly(e2,x) — Ly p(e2, X)>, (2.5)

Conditions (d) and (2.6) imply thaL,,(f)) is a Cauchy sequence and converges]io, 1].
So there exists an operatbk, on C[0, 1] such that|L, (f) — Loo(f)|| — Oforany f e
C[0, 1].

Now let p — oo in (2.5), we obtain

I/

[Ln(f, %) = Loo(f, X)I < An (X). 2.7)

(Ln(ez,x> ~ Loo(ez. 1)) = ”fz ”

Using the equivalence of K-functionals and moduli of smoothness, following the same
methods as in the proof of Theorem 5.3 of Chapter [ljnwe can get (1.1) from (2.7).
Theorem 2 is proved. [

3. Application of Korovkin-type theorem

Letg < (0O, 1]. For each non-negative intedertheg-integer{k] and theg-factorial[k]!
are defined by

1-¢5/A-q). q #1, ke —=1]---[1], k=1,
k] = { g =1, [k]!_{l, k=0.

For the integera, k, n>k>0, the Gaussiag-binomial coefficients are defined by

k| [k'[n =k

In [7], Phillips proposed the following generalization of the Bernstein operators, based
ong-integers. For each positive integerandf € C[0, 1], we define

Bug(f, x) = Zf([n])[] ]_[(1 q*x), 0<x<l1,

where an empty product denotes 1. Whee= 1, B, ,(f, x) reduces to the well-known
Bernstein polynomial®, (f, x):

- k
B, (f,x) = E f (;) (Z)Xk(l—x)nk.
k=0

Like the classical Bernstein polynomials, theBernstein operators share some good
properties. Also a great number of interesting results related tq-Bernstein operators
were obtained (sg@-7]). From[2], we know thaig-Bernstein operators satisfy Conditions
A, B. But from Theorem 1, Conditions A and B are not sufficient for the convergence of
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(Bn.q). From[4,7], we know that the-Bernstein operatotB, , reproduce linear functions
and satisfy Condition C. Itis proved [f] that B, ;(e2, x) = x2+ x(1 —x)/[n]. Hence

Bu.g(€2) = Boog(€2), Boog(ez, x) = x? + (1 — g)x(1 —x).

q"(1—q) "
| B4 (€2, X)—Boso 4 (€2, x)|:wx(l—x)<q x(1—x), O<g<l. (3.2)
11— x(1—x
sup |Bn,q(62a X) — Boo,q(EZv x)| = sup %x(l —Xx) = g
O<g<1 O<g<1 —q n
Since we know that
x(1—x)
|By,1(€2, x) — Boo,1(€2, X)| < ——,
we conclude that
x(1—x
sup |Bn,q(€2’ x) — Boog (e2, x)| < ¥ (3.2)
0<¢g<1 n
From (3.1), (3.2) and Theorem 2, we obtain that
Theorem 3. Let0 < g < 1. Then
[Bn,q(f, x) — Boo g (fs X)|<c 02(f, v/q"x(1—x) ). (3-3)
Furthermore,
Suolo1 [Bng(f, x) — Boo,g (fs X)I<c 2(f, v/x(L=x)/n). (3.4)
q€(0.1]

wherec is the absolute constant.

Remark 1. In [3], it is proved that for eaclf e C[O, 1], B, ,(f,x) = Booq(f, x),
asn — oo, uniformly with respect toc € [0, 1] andg € [a, 1], where O< o < 1,
Bs.1(f) = fandforO0< g < 1,

k
Yizo f A= q") g 120 — ¢°x). 0<x < 1,

B LX) =
q(f Xx) {f(l), =1

From (3.4), we conclude that the rates of convergei&g, (f) — Boo,q (f) | can be dom-
inated bye w( £, n~1/2) uniformly with respect tg € (0, 1].

Remark 2. In the case O< ¢ < 1, from (3.3) we know that the rates of convergence
| Br,q (f) —Boo,q (f) | have the ordeg” for the 2 times continuously differentiable function
versus 1/for the classical operators.
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Remark 3. In [8], Tiberiu Trif introduced the followingj-Meyer-Konig and Zeller opera-
tors M, 4. For each positive integer, andf e C[O0, 1], we define

. Kl <
Mg (f,3) = {Zk:Of([n”i'u) [ e =g/, 0 <1
f(l)v x =1.

The operatords, , satisfy Conditions A—C (sef8]). Thus, we conclude that Theorem 3
holds also forM,, 4.
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